approximate non central chi squared
            construct_inverse_non_central_chi_squared_interpolated_polynomial_approximation(degrees_of_freedom, polynomial_order=1, n_intervals=16, n_interpolating_functions=16)
    Computes a polynomial approximation to the inverse cumulative distribution function for the non-central \( \chi^2 \) distribution for a fixed number of degrees of freedom \( \nu \). The approximation is parametrised by a non-centrality parameter \( \lambda \).
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
| degrees_of_freedom | float | The degrees of freedom \( \nu \). | required | 
| polynomial_order | int | The polynomial order. | 1 | 
| n_intervals | int | The number of intervals. | 16 | 
| n_interpolating_functions | int | The number of interpolating functions for interpolating the non-centrality parameter \( \lambda \). | 16 | 
Returns:
| Type | Description | 
|---|---|
| Callable | The approximation. | 
Source code in src/pyarv/non_central_chi_squared/_approximate_non_central_chi_squared.py
              
            dyadic_function_approximation_constructor(f, n_intervals, polynomial_order)
    Constructs a piecewise polynomial approximation to a function \( f \) which is piecewise \( L^2 \) optimal on dyadic intervals on each of \( [0, \tfrac{1}{2} ) \) and \( [\tfrac{1}{2}, 1] \).
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
| f | Callable | \( f \). | required | 
| n_intervals | int | The number of intervals. | required | 
| polynomial_order | int | The polynomial order. | required | 
Returns:
| Type | Description | 
|---|---|
| Callable | The approximations. |