Skip to content

polynomial approximations

The interface we specify for our approximations.

PolynomialApproximationTransformer(*args, use_preallocated_output_array=False, order=1, cache_table=True, try_cached_table=True, **kwargs)

Bases: ABC

The general class all polynomial approximations should derive from.

Create the transformer.

Parameters:

Name Type Description Default
use_preallocated_output_array bool

Whether to use a user provided array with preallocated memory.

False
order int

The polynomial order.

0 = constant.
1 = linear.
2 = quadratic.
3 = cubic.
... etc. ...

1
cache_table bool

Should any coefficient tables be cached?

True
try_cached_table bool

Should coefficient table caches be tried?

True
Source code in src/pyarv/approximations/polynomial_approximations.py
def __init__(self, 
             *args, 
             use_preallocated_output_array: bool=False,
             order: int = 1,
             cache_table: bool =True, 
             try_cached_table: bool =True,
             **kwargs):
    """
    Create the transformer.

    Parameters
    ----------
    use_preallocated_output_array
        Whether to use a user provided array with preallocated memory.
    order
        The polynomial order.

        0 = constant.  
        1 = linear.  
        2 = quadratic.  
        3 = cubic.  
        ... etc. ...
    cache_table
        Should any coefficient tables be cached?
    try_cached_table
        Should coefficient table caches be tried? 
    """
    if order < 0:
        raise ValueError(f"The polynomial order must be positive, not {order = }")
    if not isinstance(use_preallocated_output_array, bool):
        raise ValueError(f"A boolean value must be specified, not {use_preallocated_output_array = }")
    if not isinstance(cache_table, bool):
        raise ValueError(f"A boolean value must be specified, not {cache_table = }")
    if not isinstance(try_cached_table, bool):
        raise ValueError(f"A boolean value must be specified, not {try_cached_table = }")
    self.use_preallocated_output_array = use_preallocated_output_array
    self.cache_table = cache_table
    self.try_cached_table = try_cached_table
    self.order = order

approximation(*args, **kwargs) abstractmethod

The underlying approximation and the interface between the Python and C functions. This may have additional parameters beyond those described by transform. (Also responsible for generating coefficient tables and caching).

Source code in src/pyarv/approximations/polynomial_approximations.py
@abc.abstractmethod
def approximation(self,
                  *args,
                  **kwargs) -> None:
    """
    The underlying approximation and the interface between the Python
    and C functions. This may have additional parameters beyond those 
    described by `transform`. (Also responsible for generating coefficient tables
    and caching). 
    """
    ...

transform(inputs, /, *, outputs=None, **kwargs)

Use a polynomial approximation for the inverse transform method.

Parameters:

Name Type Description Default
inputs Array

Uniform random numbers in .

required
outputs Array | None

A pre-allocated array containing the outputs if requested.

None
kwargs dict[str, Any]

Keyword arguments needed for any specific distribution's approximation implementation.

{}

Returns:

Name Type Description
outputs Array | None

Random variables from a desired distribution.

Source code in src/pyarv/approximations/polynomial_approximations.py
def transform(self, 
               inputs: Array, 
               /, 
               *, 
               outputs: Array | None = None, 
               **kwargs: dict[str, Any])\
        -> Array | None:
    """
    Use a polynomial approximation for the inverse transform method.

    Parameters
    ----------
    inputs
        Uniform random numbers in \( [0, 1] \). 
    outputs
        A pre-allocated array containing the outputs if requested. 
    kwargs
        Keyword arguments needed for any specific distribution's `approximation` implementation. 

    Returns
    -------
    outputs:
        Random variables from a desired distribution. 

    """
    if self.use_preallocated_output_array:
        if len(inputs) != len(outputs):
            raise TypeError(f"The {outputs = } must be the same length as the {inputs = }")
        if outputs.shape != inputs.shape:
            raise TypeError(f"The {outputs.shape} must match the {inputs.shape}")
        if not inputs.flags['C_CONTIGUOUS']:
            raise TypeError(f"The {inputs = } must be C-contiguous.")
        if not outputs.flags['C_CONTIGUOUS']:
            raise TypeError(f"The {outputs = } must be C-contiguous.")
        if inputs.dtype != np.float32:
            raise TypeError(f"The {inputs.dtype = } must be {np.float32}.")
        if outputs.dtype != inputs.dtype:
            raise TypeError(f"The {outputs.dtype = } must match {inputs.dtype = }.")
        if outputs is inputs:
            raise ValueError(f"Must use different objects for output, {inputs is outputs = }")
        if outputs.base is inputs or inputs.base is outputs:
            raise ValueError(f"The inputs and output arrays must not share any memory.")

    if not self.use_preallocated_output_array:
        if outputs is not None:
            raise ValueError(f"{self.use_preallocated_output_array = }, but {outputs = } has been provided.")
        outputs = np.empty_like(inputs)

    self.approximation(inputs=inputs, outputs=outputs, order=self.order, **kwargs)
    return outputs