polynomial approximations
The interface we specify for our approximations.
PolynomialApproximationTransformer(*args, use_preallocated_output_array=False, order=1, cache_table=True, try_cached_table=True, **kwargs)
Bases: ABC
The general class all polynomial approximations should derive from.
Create the transformer.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
use_preallocated_output_array |
bool
|
Whether to use a user provided array with preallocated memory. |
False
|
order |
int
|
The polynomial order. 0 = constant. |
1
|
cache_table |
bool
|
Should any coefficient tables be cached? |
True
|
try_cached_table |
bool
|
Should coefficient table caches be tried? |
True
|
Source code in src/pyarv/approximations/polynomial_approximations.py
approximation(*args, **kwargs)
abstractmethod
The underlying approximation and the interface between the Python
and C functions. This may have additional parameters beyond those
described by transform
. (Also responsible for generating coefficient tables
and caching).
Source code in src/pyarv/approximations/polynomial_approximations.py
transform(inputs, /, *, outputs=None, **kwargs)
Use a polynomial approximation for the inverse transform method.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
inputs |
Array
|
Uniform random numbers in . |
required |
outputs |
Array | None
|
A pre-allocated array containing the outputs if requested. |
None
|
kwargs |
dict[str, Any]
|
Keyword arguments needed for any specific distribution's |
{}
|
Returns:
Name | Type | Description |
---|---|---|
outputs |
Array | None
|
Random variables from a desired distribution. |